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Abstract

This study establishes an R&D-based growth model that includes
the functional difference between labor and human capital in the pro-
duction of goods. In our analysis, the human capital is used by the
managers in the manufacturing process. Such an allocation of hu-
man capital yields three possible steady states: endogenous growth,
poverty traps, and multiple equilibria. Economies are sorted into
these steady states according to the endowments of labor, human cap-
ital, and knowledge. Thus, the obtained steady states explain some
economic growth patterns, such as polarization and leapfrogging of
economies.
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1 Introduction

Easterly (1994) and Quah (1996, 1997) provide evidence that the world’s
richest economies are growing faster than the poorest and that world income
distribution is polarized into two groups: rich and poor. In this process of
polarization, middle income countries are also divided into rich and poor
subgroups. Moreover, these economies sometimes exhibit catching-up and
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overtaking phenomena. This implies that some middle income countries that
had been growing steadily get stuck in a low-growth equilibrium while some
underdeveloped countries suddenly begin to grow at a faster rate. As a result,
an initially poor country sometimes overtakes previously richer ones and the
relative GDP ranking of countries changes over time.1

This paper is intended to construct a simple endogenous growth model
that can explain these phenomena by introducing management of the man-
ufacturing processes, an activity which requires human capital.
Our model is a modification of the standard Romer type R&D-based

growth model (Romer 1990) in which R&D is executed for the purpose of
obtaining a monopoly profit by innovating a new variety of intermediate
goods, and the amount of human resource (labor or human capital) input to
the R&D sector is the sole endogenous determinant of the long-run growth
rate. In this framework, the present paper specifically addresses the func-
tional differences between human capital and labor in the manufacturing
process. For this purpose, we formulate the manufacturing process as a two-
stage process that includes management and production. Specifically, labor
input efficiency is assumed to be determined through management processes,
which require human capital. This setup somewhat resembles those of Tran-
Nam, Truong, and Tu (1995) and Goldin and Katz (1998); however, there
are some significant differences. Tran-Nam, Truong, and Tu (1995) presume
that skilled labor and unskilled labor function as perfect substitutes for ade-
quate skilled labor input, although more unskilled labor is needed for lower
amounts of skilled labor input. For this reason, skilled labor is inferred as
necessary for production. Goldin and Katz (1998) divide the manufactur-
ing process into machine maintenance and production. They argue that the
former is conducted by skilled labor and the latter is undertaken by raw
labor.
In contrast to these studies, our model assumes that manufacturing pro-

cesses are divisible into management and production processes. The man-
agement process may include personnel administration, process optimization,
labor education, and improving the working environment. In our analysis,
raw labor is employed only in production processes, while human capital is
applied to manufacturing through managers and to R&D activities through
researchers. Human capital is the sole human-resource input into R&D ac-
tivities. In the following analysis, our model demonstrates that while raw
labor and human capital work as perfect substitutes, production without
labor is impossible. Thus, in contrast to the Tran-Nam, Truong, and Tu

1This phenomenon is sometimes called ”leapfrogging” (see e.g., Breiz, Krugman and
Tsidon 1993).
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(1995) model, our model assumes raw labor to be essential for production.
This arrangement enables the specification of human capital as that for final
goods production or R&D activities.
The conclusions of this study are summarized as follows: First, our model

can mimic the polarization of growth rates. Since the R&D activities are
not always profitable, firms do not always conduct them. If R&D activities
are profitable, an economy grows with endogenous technological progress;
if not, the economy allocates no input for R&D and thus, remains in a no-
growth situation. When an economy has scarce resources of labor and human
capital, the equilibrium with no R&D input becomes a unique steady state,
from which an economy is unable to escape. This is known as a poverty trap,
wherein a policy for subsidizing the profits of the intermediate goods sector
can be implemented to pull an economy out of the trap. In contrast, the
richest countries have greater resources of labor and human capital; therefore,
R&D is extremely profitable, since there is a high allocation of human capital
for R&D activities. Consequently, these economies grow at a faster rate than
others; this results in polarization.
Second, our model can mimic leapfrogging. Countries with median quan-

tities of labor and human capital may have multiple equilibria. If two
economies satisfy the conditions for multiple equilibria, we might have a sit-
uation in which the country with large R&D investments suddenly switches
to the equilibrium with no R&D investment, and the other country with
no-R&D investment suddenly jumps to the equilibrium with large R&D in-
vestments. Thus, it leapfrogs the other country in terms of growth.
This paper is organized as follows: The next section describes the basic

model. Section 3 derives steady state equilibria. Section 4 concludes the
paper.

2 The Model

We assume the production structure of Benhabib, Perli, and Xie (1994) which
extends the Romer model by allowing complementarities among intermediate
inputs. Our model includes three sectors: a final goods sector, an intermedi-
ate goods sector, which comprises a continuum of intermediate goods firms
indexed by i ∈ [0, A], and an R&D sector that creates new varieties of goods
by employing existing knowledge and human capital. Time is continuous,
and a final good is used as a numeraire.
There are four production factors - physical capital (termed as ”capital”

hereinafter) K, unskilled labor or raw labor (”labor”) L, skilled labor or in-
tellectual human capital (”human capital”) H, and knowledge A, which is
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measured in terms of the variety of intermediate goods. Labor, human capi-
tal, and capital are direct inputs used in the final goods sector. Knowledge
acts as an indirect input in the production of final goods. The intermedi-
ate goods firms monopolistically supply intermediate goods by using capital.
Monopoly power is assigned by a patent, which an intermediate good firm
obtains from an R&D firm. R&D firms produce new varieties of intermedi-
ate goods by using human capital and existing knowledge as inputs, and the
cost of R&D activities is covered by the return on the sale of the patent. In
this study, the human capital H may be used in the final goods sector by
managers and in R&D activity by researchers. We assume that human cap-
ital can be freely shifted between the final goods production and the R&D
sectors. Accordingly, human capital allocation is determined in a manner
that equates the wage rates offered by these sectors.

2.1 The Final Goods Sector

It is assumed that final goods are produced by using labor and intermediate
goods. The specified production function is defined as

Y = (φL)1−α
ÃZ A

0
x(i)

α
ζ di

!ζ
, (1)

where Y , φ, L, A, and x(i) are the amount of final goods, labor efficiency, the
labor used in producing final goods, the variety index, and the intermediate
goods used in sector-i, respectively. α(0 < α < 1) and 1− α are the produc-
tivity efficiency parameters of intermediate goods and labor, implying that
the production function exhibits constant returns to scale. ζ(≥ 1) captures
the degree of complementarity between intermediate goods (if ζ = 1, there
is no complementarity). φL indicates the labor-augmenting property. The
present study assumes that the management process improves the efficiency
of raw labor input, φ. We specify the efficiency function φ as

φ(HY , L,A) = A
θ
µ
1 + γ

HY
L

¶
, γ > 0, θ > −ζ − α

1− α
, (2)

where γ and θ represent the efficiency derived from applying management
ability to labor, and the parameter relating knowledge stock to efficiency of
management ability, respectively. Eq. (2) describes the effects of human cap-
ital allocated to final goods HY , labor L on labor efficiency. Differentiating
Eq. (2) with respect to each variable yields the following properties: φHY > 0
and φL < 0. φL < 0 captures the idea that managers are less effective when
the number of workers they supervise increases. The sign of φA depends on
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the sign of θ. If θ > 0, then φA > 0 and technological progress decreases
the necessity of management activities. Further, if θ < 0, then φA < 0 and
technological progress requires more management activities.
Combining Eqs. (1) and (2) yields the optimizing problem of the final

goods firms:

max
L,HY ,{x(i)}

Aθ(1−α)(L+ γHY )
1−α

ÃZ A

0
x(i)

α
ζ di

!ζ
− wLL

−wYHY −
Z A

0
p(i)x(i)di (≡ ΠY ), (3)

where wL, wY , p(i), and Π
Y denote the wage of the laborers, the wage of the

human capital employed in the final goods sector, the price of the interme-
diate goods, and the aggregate profit of the final goods firms, respectively.
The firms in the final goods sector are assumed to be price takers that max-
imize profits. Therefore, they choose the level of input that will equate the
marginal production of input factors and the factor price.
The first-order conditions (FOCs) indicate

∂ΠY

∂L
= (1− α)Aθ(1−α)(L+ γHY )

−α
ÃZ A

0
x(i)

α
ζ di

!ζ
− wL = 0 (4)

∂ΠY

∂HY
= γ(1− α)Aθ(1−α)(L+ γHY )

−α
ÃZ A

0
x(i)

α
ζ di

!ζ
− wY = 0. (5)

Eqs. (4) and (5) indicate that the relationship between the wages of labor
and human capital is given by wY = γwL.
Our model does not satisfy one of the Inada conditions. From Eq. (5), the

upper and lower bounds of the wage, w̄Y and wY , respectively, are determined
on the basis of the condition HY ∈ [0, H] as follows:

w̄Y ≡ wY |HY =0 = γ(1− α)Aθ(1−α)L−α
ÃZ A

0
x(i)

α
ζ di

!ζ
(<∞),

wY ≡ wY |HY =H = γ(1− α)Aθ(1−α)(L+ γH)−α
ÃZ A

0
x(i)

α
ζ di

!ζ
(> 0).

Therefore, in this model, wY does not satisfy the Inada condition: limHY −→0wY =
∞, which implies that human capital is not an essential factor in final goods
production.
In order to derive the demand of intermediate goods by the final goods

sector, we assume p(i) = p, ∀i. Subsequently, all intermediate goods are
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demanded in the same amount: x(i) = x, ∀i. Using (3), this amount is
implicitly given by the FOC:

p = αAζ+θ(1−α)−1(L+ γHY )
1−αxα−1. (6)

2.2 The Intermediate Goods Sector

An intermediate goods firm i is a firm that possesses a permanent patent on
the intermediate goods used in sector i. Consequently, the intermediate goods
firm can monopolistically supply the ith intermediate good. It is assumed
that one unit of intermediate goods requires η units of physical capital, the
rental price of which (that is, the interest rate) is denoted by r. The inverse
demand function for an intermediate good xj is

pj = αAθ(1−α)(L+ γHY )
1−α

ÃZ A

0
x(i)

α
ζ di

!ζ−1
x
α
ζ
−1

j .

Hence, the optimizing problem of an intermediate goods sector is given by

max
xj

αAθ(1−α)(L+ γHY )
1−α

ÃZ A

0
x(i)

α
ζ di

!ζ−1
x
α
ζ

j − rηxj (≡ πM).

Its solution entails

α2

ζ
Aθ(1−α)(L+ γH)1−α

ÃZ A

0
x(i)

α
ζ di

!α−1
x
α
ζ
−1

j = rη.

In a symmetric Nash-equilibrium, x(i) = x, ∀i, which implies

αAζ+θ(1−α)−1(L+ γHY )
1−αxα−1 =

rηζ

α
. (7)

From Eqs. (6) and (7), the intermediate goods firms set their prices as
p = ζηr

α
. This pricing yields the profit of the intermediate goods firms as

follows:

πM =
ζ − α

α
rηx. (8)

2.3 The R&D Sector

Innovation is assumed to be the discovery of a new design of intermediate
goods that are added to the existing set of intermediate goods. R&D firms
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create the designs of new intermediate goods, and the patents of these de-
signs bear the stream of monopoly profits. The present value of this stream
represents the value of R&D:

v ≡
Z ∞
0

πM(τ)e−
R τ

0
r(s)dsdτ.

Since the R&D sector is also assumed to be competitive, the value of R&D,
v, is equated to the price of a design.
In the process of innovation, it is assumed that R&D firms use human

capital and enjoy the free use of knowledge, which is measured by stock of
intermediate goods variety. An R&D firm j that employs Hj

A units of human
capital produces an output equal to δAHj

A (δ > 0) and makes a profit

πR = vδAHj
A − wAHj

A,

where wA is the wage offered in the R&D sector.
Free entry of R&D is assumed. Thus, if πR > 0, then an infinite amount

of human capital would be allocated to R&D activities; therefore, this cannot
hold in equilibrium. On the other hand, if πR < 0 holds, then investment
in R&D is unprofitable. Consequently, resources are no longer allocated to
R&D and an equilibrium without R&D (HA = 0) occurs. However, if π

R = 0,
then a positive amount of human capital would be allocated to R&D and the
market would be in equilibrium. This situation arises if

vδA = wA or V ≡ vA = wA
δ
, (9)

where V ≡ vA is the total production of the R&D sector. If V < wA/δ, there
will be no R&D. If R&D is undertaken, technological knowledge imposes
according to

Ȧ

A
= δHA. (10)

2.4 Key Dynamic Equations

This subsection introduces some important dynamic equations. Since capital
is used only in the intermediate goods sector and η units of intermediate
goods are produced from one unit of physical capital, the aggregate level of
physical capital K is defined as

K ≡
Z A

0
η x(i)di = ηAx. (11)

Since H is used either in final goods production or in the R&D sector,
the ratio of human capital devoted to the management process, HY , to the
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aggregate human capital, H, can be written as s ≡ HY
H
. According to this

definition, 1−s = HA
H
represents the ratio of human capital devoted to R&D,

HA, to the aggregate human capital, H. Under this expression, the amount
of human resource allocated to final goods production is defined as

N(s) ≡ L+ γsH = L+ γHY .

The definition of N(s) dictates that N(1) = L + γH ≡ N corresponds to
the sum of manual labor and effective intellectual human capital, i.e., the
total human resources. It is noteworthy that this human resource index N
is associated with the manufacturing of final goods through the efficiency
function φ in the final goods production.
Eliminating x from Eq. (1) by using the definition of Eqs. (2) and (11),

and incorporating the expression N(s), we derive the aggregate product

Y = η−αAψN(s)1−αKα, (12)

where ψ ≡ ζ − α+ θ(1− α) > 0. From Eqs. (7), (11), and (12), the interest
rate is given as

r =
α2

ζ

Y

K
. (13)

Using (5), (8) and the variable Y , the profit of the intermediate goods sector
and the wage determined by the final goods sector can be rewritten as follows:

πM =
α(ζ − α)

ζ

Y

A
and wY = γ(1− α)

Y

N(s)
. (14)

In equilibrium, the arbitrage condition with respect to wage rates equates
wA given by Eq. (9) and wY in Eq. (14) through the allocation of human
capital. However, if one wage rate is higher than the other at the boundary
of allocation s = 1 or s = 0, all human capital will be employed in the sector
that offers the higher wage rate. If wY > wA, then s = 1, and if wY < wA,
then s = 0. These conditions are summarized as follows:

s = 0
s: inner solution
s = 1

⇐⇒ wA


>
=
<

wY . (15)

Then the wage of human capital wH is determined as wH = max{wA, wY }.
The next section presents a detailed analysis of this condition.
There exist two types of households in our economy: households with

(raw) labor and households with human capital. Consequently, there are
two optimizing problems. However, since the instantaneous utility function
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is assumed to be a constant relative risk aversion (CRRA) type, we convert
the two optimizing problems to one aggregative problem2, as

max Ut =
Z ∞
0

C1−σ − 1
1− σ

e−ρtdt, ρ > 0, σ > 0, (16)

s.t. K̇ = rK + wLL+ wHH + Π
M − C, (17)

where ρ and σ are the discount rate and CRRA parameters, respectively.
By solving the above problem using this instantaneous utility function,

the Keynes-Ramsey rule is obtained as

σ
Ċ

C
+ ρ = r. (18)

The transversality condition (TVC) is given as

lim
t→∞ e

−ρtλtKt = 0, (19)

where λ(≡ C−σ) is a shadow price of capital stock K.
A market-clearing condition is obtained by substituting N , wY , and Eqs.

(13) and (14) into Eq. (17); this yields the following equation:

K̇ = Y − C. (20)

Differentiating V with respect to time, we have the following dynamic
equation:

rV = V̇ + ΠM , (21)

where ΠM denotes the aggregate profit of the intermediate goods sector de-
fined as ΠM ≡ R A

0 π(j)Mdj, which is calculated from Eq. (14) as

ΠM = AπM =
α(ζ − α)

ζ
Y. (22)

The economy is endowed with a fixed stock of unskilled labor and human
capital at every instant of time, that is,

L̇ = Ḣ = 0.

These dynamic equations constitute the system in this model.
The model contains two state variables whose initial values are historically

given as physical capital K and technological knowledge stock A. Therefore,

2Since this utility function is homothetic, the reduced consumption functions with
respect to wealth are linear. Thus, these two functions can be aggregated.
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it displays transitional dynamics; however, as shown later, the model has four
types of steady states, which always contain at least one saddle stable path
under some restrictions3. Therefore, we will now concentrate our attention
on the steady state analysis.

3 Steady State

3.1 Variables in Steady States

A steady state implies that each variable grows at a constant rate. The
growth rate of variable Z is written as gZ in this paper.
The dynamic equation of patent accumulation (10) implies that the growth

rate of knowledge is
gA = δHA = δ(1− s)H . (23)

From this equation, s is constant in the steady state. From Eq. (20),

K̇

K
=
Y

K
− C
K

holds. Accordingly, in the steady state, gK = gY = gC(≡ g∗) is necessary for
gK to be constant. From Eq. (12), the relationship among the growth rates
of Y , K, and A is given as

Ẏ

Y
= α

K̇

K
+ ψ

Ȧ

A
.

The above equation and gK = gY = g
∗ demonstrate the following relationship

between the growth rate of physical capital and knowledge:

g∗ =
ψ

1− α
g∗A =

ψ

1− α
δ(1− s∗)H, (24)

where s∗ is the value of s in a steady state.
It is useful to express the system in terms of variables that will be constant

in a steady state. From Eq. (24), the knowledge-adjusted variable X̂ for
variable X can be defined as follows:

X̂ ≡ X

A
ψ

1−α
, for X = Y,K, andC. (25)

3The stability analysis of the current model is offered in the longer version of this paper,
that can be downloaded at http://www.geocities.jp/kuwahala/MA.pdf
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By this expression, Eqs. (12) and (13) can be rewritten as

Ŷ = η−αN(s)1−αK̂α, and r =
α2

ζ

Ŷ

K̂
. (26)

These variables are constant in the steady state. From (19) and (24), the
TVC is rewritten as

ρ > (1− σ)g(s∗). (27)

3.2 The R&D Condition

This subsection presents the condition for positive R&D activities in the
steady state. Eq. (21) is rewritten as

r − gV = ΠM

V
. (28)

Since r and gV must be constant in the steady state, Eq. (28) implies that
gV = gΠM holds in the steady state. From Eq. (22), gΠM = gY = g∗ is
necessary in the steady state. Combining gV = gΠM and gΠM = gY = g

∗, we
have gV = g

∗ in the steady state. Substituting gV = g∗ and wA = δV from
Eq. (9) and ΠM from Eq. (22) into Eq. (28), and solving it with respect to
wA, we obtain the following equation:

wA =
δα(ζ − α)Y

ζ(r − g∗) . (29)

According to TVC and Keynes-Ramsey rule, r − g∗ = ρ − (1 − σ)g∗ > 0,
which yields wH > 0.
Substituting Eqs. (14) and (29) into Eq. (15) yields the following rela-

tionships between s and wages:

s∗ = 0
s∗ ∈ (0, 1)
s∗ = 1

⇐⇒ wA =
αδ(ζ − α)Y

ζ(r − ψ
1−αgA)


>
=
<

 γ(1− α)
Y

N(s∗)
= wY .

Eliminating Y and r by using Eqs. (24) and (26), the above arbitrage con-
dition is solved with respect to K̂ as

K̂


>
=
<


 α2

ζ
η−α

δ(ζ−α)
γζ(1−α)αN(s

∗) + ψ
1−αδ(1− s∗)H


1

1−α

N(s∗)(≡ K̂(s∗)RD).

⇐⇒

s∗ = 0
s∗ ∈ (0, 1)
s∗ = 1

(RD)
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The R&D condition (RD) has the following properties: When s∗ ∈ (0, 1),
there exists a corresponding equilibrium knowledge-adjusted capital stock
K̂ = K̂(s∗)RD. Along the lines of s = 0 and s = 1, K̂ > K̂(0)RD and
K̂ < K̂(1)RD satisfy condition (RD), respectively4. Therefore, the set (s∗, K̂),
satisfying condition (RD), is drawn as an R&D line in Figure 1.

3.3 The Keynes-Ramsey Line

This subsection derives the equilibrium condition, which stems from the opti-
mization of households. In a steady state, the knowledge-adjusted consump-
tion level must be constant:

˙̂
C

Ĉ
=
Ċ

C
− ψ

1− α
δ(1− s)H = 0 .

Substituting the interest rate given by Eq. (26) and the Keynes-Ramsey rule
(18) into this equation, the steady-state knowledge-adjusted capital stock
must satisfy the following equation:

1

σ

Ã
α2

ζ
η−αN(s∗)1−αK̂α−1 − ρ

!
=

ψ

1− α
δ(1− s∗)H.

This equation yields the knowledge-adjusted capital stock in a steady state
as a function of s∗:

K̂ =

 α2

ζ
η−α

σ ψ
1−αδ(1− s∗)H + ρ


1

1−α

N(s∗)(≡ K̂(s∗)KR). (KR)

This equation is derived from the household’s optimal condition, the Keynes-
Ramsey rule. For this reason, we refer to this equation as the Keynes-Ramsey
line. Appendix A.2 shows that (KR) is an increasing function on the s∗-K̂
plane. The line is drawn in each panel of Figure 1 as a KR-line.

3.4 Steady States

3.4.1 Three Types of Equilibria

In this subsection, we derive the equilibria of human capital allocation. There
are three types of equilibria: a ”no-R&D equilibrium” (s∗ = 1), in which

4The equilibria with s∗ = 0 and s∗ = 1 are the specialized equilibria pertaining to the
human capital allocation between the R&D sector and the final goods sector. They exist
because both wage rates do not diverge when the human capital input for each sector
tends to be 0.
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all human capital is devoted to the manufacture of final goods, a ”R&D-
Specialized Equilibrium” (s∗ = 0), in which all human capital is devoted
to R&D activities, and a ”Diversified Equilibrium” (s∗ = s̄ ∈ (0, 1)), in
which human capital is the input for both final goods and R&D sectors (See
Appendix A.2 for detailed derivations.).

No-R&D Equilibrium (NE) When s∗ = 1 holds in equilibrium, a no-
R&D equilibrium (NE) emerges. The condition for this equilibrium is pre-
sented as K̂(1)KR < K̂(1)RD. It is summarized as the following inequality:

N < B(α, γ, δ, ρ, ζ)

Ã
≡ γρζ(1− α)

αδ(ζ − α)

!
. (PT )

Equation (PT ) shows that poverty traps emerge when the available human
resources are smaller than the threshold B(α, δ, ρ, ζ). Since Bα < 0, Bδ < 0,
Bρ > 0, and Bζ < 0, a higher level of human resources N are required to
escape from the poverty trap in cases where (i) the R&D efficiency δ is low,
(ii) the efficiency of intermediate goods on final goods production α is low,
(iii) the subjective discount rate ρ is high, or and (iv) the complementarity
between intermediate goods is low. Since (PT) is transformed into L =

γ(B̃ − H), where B̃ = B/γ = ρζ(1−α)
αδ(ζ−α) , the large population is necessary for

the higer effects of human capital management ability and low human capital
endowment.

R&D-specialized Equilibrium (RE) In the case of s∗ = 0, all human
capital is devoted to R&D activities. The condition is given as K̂(0)KR >
K̂(0)RD, and can be made into the following inequality:

Ñ > B(α, γ, δ, ρ, ζ), (RS),

where Ñ ≡ L + γζψ(1−σ)
α(ζ−α) H, and Ñ represents the threshold level of human

resources required to create an RE.

Diversified Equilibrium (DE) When the share of human capital is writ-
ten as s̄(∈ (0, 1)), then the human capital is diversified into both R&D and
final goods production sectors, which is referred to as DE. A DE could emerge
when the following conditions are satisfied

N < B(α, γ, δ, ρ, ζ) < Ñ or Ñ < B(α, γ, δ, ρ, ζ) < N.

As discussed later, the former condition relates to cases of multiple equilib-
ria, where s̄ is one of the multiple equilibria and is associated with positive
growth. The latter represents the condition for a unique equilibrium with
positive growth.
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3.4.2 Types of Steady States

In this subsection, four types of steady states are derived by investigating
the conditions of the equilibria. All these types are shown in Figure 1; the
relationship between steady states and equilibria is given in Table 1.

Case A. Growth with R&D-specialized Human Capital (RS) Case
A has only one equilibrium with s∗ = 0.

K̂(0)KR > K̂(0)RD and K̂(1)KR > K̂(1)RD.

This case is depicted in Figure 1(a). The steady state is uniquely determined,
and all human capital is devoted to the R&D sectors. From the above condi-
tions, we derive the following: min(N, Ñ) > B. This condition implies that
both the human resource indices are larger than the threshold B.

Case B. Growth with Diverged Human Capital (D) Case B has a
unique inner solution s∗ = s̄.

K̂(0)KR < K̂(0)RD and K̂(1)KR > K̂(1)RD.

The situation is depicted in Figure 1(b). An inner solution of s∗ is uniquely
determined. The economy grows endogenously. When (PT ) and (RS) do
not hold simultaneously, only one inner solution exists. This situation is
characterized by the condition Ñ < B < N , which indicates that human
resources N are large, but R&D-related human resources Ñ are sufficiently
small. The condition in this case implies N > Ñ , which requires

σ > σ̄

Ã
≡ 1− α(ζ − α)

ζψ(θ)

!
.

Since σ̄ζ < 0, σ̄ψ > 0, and ψθ > 0, large σ and ζ, and a small θ are necessary
for satisfying this condition.

Case C. No Growth or Poverty Traps (NG) A ”poverty trap” is
defined as a situation wherein the economy stagnates. The case mentioned
in this paper has a unique NE (s∗ = 1) and its conditions are given as follows:

K̂(0)KR < K̂(0)RD and K̂(1)KR < K̂(1)RD.

This case is depicted as Figure 1(c). These conditions can be summarized
as max(N, Ñ) < B. This implies that both the human resource indices are
smaller than the threshold B.5

5This steady state can be eliminated by subsidizing R&D profits. Consider that a
constant rate tax τ > 0 (a subsidy of τ < 0) is provided for the interest (the rental price
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Case D. Multiple Equilibrium (ME) This case contains three equilib-
ria, s∗ = 0, s̄, 1.

Fig.1(d)⇐⇒ K̂(0)KR > K̂(0)RD and K̂(1)KR < K̂(1)RD.

When (PT ) and (RS) hold simultaneously, both points of s∗ = 1 and s∗ = 0
are equilibria (and furthermore, there exists an inner solution). This case
is depicted in Figure 1(d). This yields the condition N < B < Ñ : human
resources N are small, but R&D-related human resources Ñ are adequate.
The condition Ñ > N implies that σ < σ̄. Figure 1(d) depicts this case.
Because ψθ > 0, small γ and σ, and large θ and ζ are necessary for the
multiple steady states.
From cases B and D, we obtain the result that a small CRRA parameter

and a middle range of human resource endowment are necessary for multiple
equilibria. Stated differently, countries with median human resources can
achieve leapfrogging or decomposition.

4 Conclusions

This study establishes an R&D-based growth model that includes the func-
tional difference between labor and human capital in the production of goods.
Our model assumes that the manufacturing processes are divisible into the
management and production processes and that human capital is used in
the management process, while labor is used in the production process. This
arrangement yields one of the following steady states: long-run positive R&D-
based growth, poverty traps, and multiple equilibria. Therefore, the steady
states provided by this study are consistent with large diversities in economic
growth rates, which result in polarization and leapfrogging. The results ob-
tained and the mechanisms adopted are summarized as follows:
First, a small endowment of human resources implies less demand for

innovation resulting in high costs of R&D activities. Since the range of the
wage rate, which can vary through the allocation of human capital between

of capital) and the profit of the intermediate sector: rτ = (1− τr)r and πτ = (1− τπ)πM ,
where τr and τπ are the interest tax and the profit tax, respectively. Translating r and π
in (KR) and (RD) to rτ and πτ , we can obtain the KR and RD lines after being taxed
(or subsidized). Human capital allocation in the steady state depends entirely on the
positional relationship between the KR and RD lines. We can easily observe that the
change in the interest tax has no effect on this positional relationship since any change
in τr produces merely a parallel shift of both the lines. As a result, equilibrium capital
allocation s∗ does not change at all; therefore, the change in interest tax is not an effective
economic policy for long-run growth. In contrast, τπ only effects the RD line. If τπ < 0,
then the RD line shifts upward, thus, eliminating the NG equilibrium.
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the two sectors, is restricted, all human capital may be concentrated toward
the manufacturing of final goods. Thus, no R&D activity is undertaken.
In this situation, the economy lacks technological progress and falls into a
poverty trap. This equilibrium can be eliminated by enacting certain policies,
for example, subsidizing the profits of the intermediate goods firms. In a case
where a country has sufficient human resources to ensure that R&D is prof-
itable, R&D is conducted constantly and the economy grows continuously.
This results in the polarization of economies. Second, when economies with
median endowments of human resources have a higher parameter of intertem-
poral elasticity of substitution, ME may occur. The case of ME contains two
saddle stable paths converging to NE and RE. Therefore, growth rates can
change depending on the equilibrium R&D investment and may generate
leapfrogging.

Appendix

A.1 Stability Analysis

Corresponding to the allocation of human capital between R&D and man-
agement, the model of this study has three types of steady states:

Diversified Equilibrium (DE) s∗ = s̄ ∈ (0, 1), or N(s̄) = L+ γs̄H,

No-R&D Equilibrium (NE) s∗ = 1, or N(1) = L+ γH,

R&D-Specialized Equilibrium (RE) s∗ = 0, or N(0) = L.

The index of DE, NE, and RE are given as ∗1, ∗2, and ∗3, respectively.
The stability of the model is given as follows:
Let χ ≡ C/K, and substituting χ and r = (α2/ζ)(Y/K) (from (13)) into

K̇/K = Y/K − C/K (from (20)), we obtain

gK =
ζ

α2
r − χ, (30)

where gZ ≡ Ż/Z. We define n ≡ N(s) = L + γsH, and because s ∈ [0, 1],
n ∈ (L,N).
Equation (10) and the definition of n, knowledge growth is governed by

gA =
δ

γ
(N − n). (31)

From Eqs. (18) and (30), the dynamics of χ are given as

gχ =

Ã
1

σ
− ζ

α2

!
r − ρ

σ
+ χ. (A1)
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When n ∈ (L,N) hold, V = wY /δ must be satisfied. Differentiating V =
wY /δ, wY = γ(1 − α)Y/n, and r = (α2/ζ)(Y/K) with respect to time yield
gV = gwY = gY − gn = gr + gK − gn. Substituting this, (30) and

ΠM =
α(ζ − α)

ζ
Y

into r = gV + Π
M/V , we obtain

gn = gr +
ζ

α2
r − χ− r + αδ(ζ − α)

γζ(1− α)
n. (32)

Substituting gr = gY − gK (from (13)), (30), and (31) into gY = ψgA + (1−
α)gn + αgK (from (12)), we derive

gr =
δ

γ
ψ(θ)(N − n) + (1− α)gn + (α− 1)

Ã
ζ

α2
r − χ

!
. (33)

Eliminating gn − (ζ/α2)r + χ by using (32) and (33) provides the dynamics
of r as follows:

gr =
δ

αγ
ψ(θ)(N − n)− 1− α

α
r +

ζ − α

γζ
δn. (A2)

Substituting (A2) into (32), we obtain

gn =
δ

αγ
ψ(θ)(N − n) + δ(ζ − α)

γζ(1− α)
n+

Ã
ζ

α2
− 1
α

!
r − χ. (A3)

(A1), (A2), and (A3) depict the dynamics of the model of this study.

The case of DE Using (A1), gχ = 0, and
ψ(θ)
1−αgA =

1
σ
(r − ρ), the value of

χ in a steady state can be given as

χ∗ = − ψ(θ)

1− α
g∗A +

ζ

α2
r∗. (34)

From gr = 0, we immediately obtain the value of r in a steady state as

r∗ =
ψ(θ)

1− α
g∗A +

αδ(ζ − α)

γζ(1− α)
n∗. (35)

By substituting r − ρ = σψ(θ)
1−αgA into (35), n

∗1 is derived as

n∗1 =
(1− α)γρ− (1− σ)δψ(θ)N

(αδ)(ζ − α)− (1− σ)δψ(θ)
.
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The Jacobian in this case is given as

J∗1 ≡


χ∗1

³
1
σ
− ζ

α2

´
χ∗ 0

0 −
³
1
α
− 1

´
r∗

³
− δ

αγ
ψ(θ) + δ(ζ−α)

γζ

´
r∗

−n∗ ζ−α
α2 n

∗
³
− δ

αγ
ψ(θ) + δ(ζ−α)

γζ(1−α)
´
n∗

 .
By using (34) and (35), the trace of J∗1 is calculated as

Tr∗1 =
ζ − α

α2
r∗| {z }

positive

+

"
δ(ζ − α)(1 + α)

γζ(1− α)
− δ

αγ
ψ(θ)

#
n∗| {z }

positive or negative

.

This equation implies that if ψ(θ) < (ζ−α)(1+α)
ζ(1−α) α, then Tr∗1 > 0. For example,

a small θ realizes Tr∗1 > 0.
The determinant of J∗1 is given as

Det∗1(χ∗1, r∗1, n∗1) = −
"
1

σ

Ã
δ(ζ − α)

γζ
− δ

αγ
ψ(θ)

!
+
δψ(θ)

αγ

#
χ∗1r∗1n∗1.

Since χ∗1, r∗1, and n∗1 are positive, the condition Det∗1 < 0 requires

1

σ

Ã
δ(ζ − α)

γζ
− δ

αγ
ψ(θ)

!
+

δ

αγ
ψ(θ) > 0.

Solving this condition with respect to σ, we obtain

σ > 1− α(ζ − α)

ζψ(θ)
(= σ̄)

It should be denoted that this condition is the same one in which the case
of Growth with Diversify Equilibria (D) emerges. Therefore, a combination
of sufficiently small ψ(θ) and σ yield Det∗1 < 0 < Tr∗1, which guarantees
that the economy has a unique saddle-stable path converging to the steady
state {χ∗1, r∗1, n∗1}. The case of ME also contains equilibrium {χ∗1, r∗1, n∗1};
however, the equilibrium does not have a saddle stable path.

The case of NE In this case, all human capital is employed on the manage-
ment in the final goods sector - n = N holds. N < B(α, δ, ρ, ζ) is necessary
for this equilibrium to exist. In equilibrium, n∗ = N yields gY = gK = gC =
gA = 0. Accordingly, Eq. (18) provides r

∗ = ρ, and this r∗ = ρ and Eq. (20)
give χ∗ = Y/K = (ζ/α2)r∗ = (ζ/α2)ρ. Since n = N is a corner solution,
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ṅ|∗2n=N > 0 is necessary for the convergence from n < N to n = N . However,
substituting {χ∗2, r∗2, n∗2} = {(ζ/α2)ρ, ρ, N} into (A3) yields

gn|∗2n=N =
δ(ζ − α)

ζ(1− α)
(N − B(α, δ, ρ, ζ)) < 0.

Therefore, the path converging to NE must satisfy n = N in the neighbor-
hood of NE. In this case, it is convenient to describe the system by using K̂,
Ĉ, and ṽ(≡ V/Y ). Since the dynamics of K̂ and Ĉ do not include ṽ, and the
dynamics of ṽ depend on K̂ and ṽ, the dynamic system is separable into two
two-dimensional systems, {K̂, Ĉ} and {K̂, ṽ}. We first consider the former
system, {K̂, Ĉ}, following which we consider the latter, {K̂, ṽ}.
In this case n = N ; therefore, gA = 0. The dynamics of K̂ and Ĉ are

depicted as

˙̂
K = η−αK̂α − Ĉ,
˙̂
C =

1

σ

Ã
α2

ζ
η−αK̂α−1 − ρ

!
Ĉ.

This is the same form of the simple Ramsey-Cass-Koopmans model; there-
fore, K̂ and Ĉ have a unique saddle-stable path converging to the steady
state (K̂∗2, Ĉ∗2).
From (21), the dynamics of ṽ can be rewritten as

˙̃v = − α2

ζ
η−αK̂α−1

| {z }
r

ṽ +
α(ζ − α)

ζ(1− α)| {z }
ΠM/Y

.

Therefore, the dynamics of ṽ are governed by

˙̃v


>
=
<

 0⇐⇒ ṽ


>
=
<

 (ζ − α)ηα

α(1− α)
K̂1−α.

Investigating this condition and the converging property of K̂, we obtain the
phase diagram in Figure 2(a).
An unprofitable condition of R&D must be satisfied on the path and

steady states. The condition is calculated as ṽ < γ(1− α)/(δN) from

V < wY /δ.

The threshold line of the condition is given as line wY /(δY ) = γ(1−α)/(δN).
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The case of RE This case in which n = L holds implies that all human
capital is employed in R&D activities. Ñ > B(α, δ, ρ, ζ) is necessary for the
existence of this equilibrium. In equilibrium, n∗ = L yields gY = gK = gC =
ψ
1−αgA =

ψ
1−αδH. Accordingly, Eq. (18) provides r

∗ = ρ + ψσ
1−αδH, and this

condition and Eq. (20) result in χ∗ = (ζ/α2)r∗ + ψσ
1−αδH. Since n = L is a

corner solution, ṅ|∗3n=L < 0 is necessary for the convergence from n > L to
n = L. However, substituting {χ∗3, r∗3, L} into (A3) yields

gn|∗3n=L =
δ(ζ − α)

ζ(1− α)
(Ñ − B(α, γ, δ, ρ, ζ)) > 0

Therefore, the path converging to RE must satisfy n = L in the neighborhood
of NE. In this case, it is convenient to describe the system by using K̂, Ĉ,
and ṽ, and the system in this case is also separable into two two-dimensional
systems {K̂, Ĉ} and {K̂, ṽ}.
Regarding K̂ and Ĉ, the dynamical system is depicted as

˙̂
K = η−αK̂α − Ĉ − g∗3A K̂,
˙̂
C =

(
1

σ

Ã
α2

ζ
η−αK̂α−1 − ρ

!
− g∗3A

)
Ĉ,

where g∗3A = ψ(θ)δ
1−α H. This is the same form of the Ramsey-Cass-Koopmans

model with a constant rate of exogenous technological progress, therefore,
K̂ and Ĉ have a unique saddle-stable path converging to the steady state
(K̂∗3, Ĉ∗3).
In this case, we can demonstrate the same dynamical properties as with

the case of NE. Subsequently, we have the phase diagram in Figure 2(b). In
this case, wA > wY must be satisfied on the path and the steady state. This
condition is given as line wY /(δY ) = γ(1− α)/(δL).

A.2 Equilibrium Human Capital Allocation

In the steady state, the human capital allocation is determined by conditions
(RD) and (KR).
The R&D condition determines the equilibrium human capital allocation

derived from the arbitrage of wage, which is summarized as the following
correspondence:

K̂


> K̂(0)RD, if s∗=0,
= K̂(s∗)RD, if s∗ ∈ (0, 1),
< K̂(1)RD, if s∗=1,

(RD)
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where K̂(s∗)RD is derived as

K̂ =

 α2η−α
ζ

αδ(ζ−α)
γζ(1−α)N(s

∗) + ψ
1−αδ(1− s∗)H)


1

1−α

N(s∗)(≡ K̂(s)RD).

The household’s optimization for consumption derives the Keynes-Ramsey
Rule, which is written as

K̂KR =

 α2

ζ
η−α

ψδσ
1−α(1− s∗)H + ρ


1

1−α

N(s∗)(≡ K̃(s∗)KR 1
1−αN(s∗)). (KR)

The derivative of K̃(s∗)KR is calculated as dK̃(s
∗)KR
ds

> 0. From this, we infer
that the KR line is increasing with s∗ because

dK̃(s∗)RD

ds∗
=

1

1− α
K̃KR α

1−α
dK̃(s∗)KR

ds
N(s∗) + K̃KR 1

1−αγH > 0.

We can obtain the analytical solutions (s∗, K̂) that satisfy (RD) and
(KR). There are three types of solutions. One is a case of NE with s∗ = 1.
The other two cases are of positive growth (s∗ = s̄ ∈ [0, 1)): one is the
case with a corner solution (s∗ = 0), termed the RE; the other has an
inner solution (s∗ = s̄ ∈ (0, 1)), termed DE. Thus NE, RE, and DE are
derived by the conditions K̂(1)KR < K̂(1)RD, K̂(0)KR > K̂(0)RD, and
s̄ = args∗{K̃(s∗)RD = K̃(s∗)KR}, respectively.
Substituting (KR) and (RD) into conditions K̂(1)KR < K̂(1)RD and

K̂(0)KR > K̂(0)RD, respectively, we obtain the following conditions

N < B(α, γ, δ, ρ, ζ) ≡ γρζ(1− α)

αδ(ζ − α)
(PT )

and

Ñ ≡ L+ γζψ

α(ζ − α)
(1− σ)H > B(α, γ, δ, ρ, ζ), (RS),

respectively. The first equation is the condition for the NE; the second equa-
tion is the condition for RE.
Section 2.3 defined N as human resources that are related to final goods

production, whereas Ñ can be interpreted as human resources that are related
to R&D activity. B(α, γ, δ, ρ, ζ) can be regarded as the threshold of level of
R&D. The properties are as follows: it is obvious that ∂B

∂γ
> 0, ∂B

∂ρ
> 0 and

∂B
∂δ
< 0. ∂B

∂α
and ∂B

∂ζ
are calculated as follows:

∂B

∂α
= −γρζ(α(1− α) + (ζ − α))

δα2(ζ − α)2
< 0,
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and
∂B

∂ζ
= −γρα(1− α)

αδ(ζ − α)2
< 0.

DE is determined by the equation s̄ = args∗{K̃(s∗)RD = K̃(s∗)KR}. This
equation provides one solution:

s̄ =
(αδ(ζ − α)/ζ)L+ (1− σ)δψH − (1− α)γρ

[(1− σ)δψ − (αδ(ζ − α)γ/ζ)]H
.

When s̄ ∈ (0, 1), s̄ is the equilibrium human capital share. The condition
0 < s̄ < 1 is calculated as Ñ < B(α, γ, δ, ρ, ζ) < N for σ > σ̄, and N <
B(α, γ, δ, ρ, ζ) < Ñ for σ < σ̄. It should be noted that N < B(α, γ, δ, ρ, ζ) <
Ñ contains the conditions of RE (N < B), and NE (Ñ > B); therefore, RE
and NE also become equilibria. Hence, this case generates ME. These results
are summarized in Table. 1.
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Table 1: Steady States and Equilibria

Equilibrium Type s∗ = 1 s∗ = s̄ s∗ = 0 Condition about

(Growth rate) (g∗ = 0) (g∗ = ζ−α
1−α s̄

∗H) (g∗ = ζ−α
1−αH) B(α, δ, ρ, ζ)

Case A (RS) ° B < N, Ñ

Case B (D) ° Ñ < B < N

Case C (NG) ° N, Ñ < B

Case D (ME) ° ° ° N < B < Ñ
°: Equilibrium

K̂(1)RD

K̂

K̂(1)RD

0

KR-Line

K̂(1)KR

K̂(0)KR

1

•

K̂(1)RD

K̂

K̂(1)RD

0

(a) Case A

KR-Line

RD-Line

K̂(1)KR

K̂(0)KR

1

•
•

•

RD-Line

s̄

K̂(0)RD

K̂

K̂(1)RD

0

K̂(1)KR

K̂(0)KR

RD-Line

1

•

KR-Line

K̂(0)RD

K̂

K̂(1)RD

0

K̂(0)KR

KR-Line

1

• RD-Line

s̄
(b) Case B

(c) Case C (d) Case D

s∗

s∗

s∗

s∗

Figure 1. Types of Steady States

K̂(1)KR
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˙̃v = 0

˙̂
K = 0

K̂

ˆ̃v

K̂∗2

1−α
δN

E∗2

˙̃v = 0

˙̂
K = 0

K̂

ˆ̃v

K̂∗3

1−α
δL

E∗3

Figure 2. Phase Diagram of (K̂, ṽ)

(a) Case of (NE) (b) Case of (RE)
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